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Objectives 
 
 In this project, we have sought to develop exact criteria for steady and unsteady 
aerodynamic separation in two- and three-dimensional fluid flows. We also aimed to verify our 
results numerically and experimentally, and develop new algorithms for controlling the location 
and shape of unsteady separation. 
 
Approach 
 

In our approach, separation structures are identified as unstable manifolds emanating 
from a no-slip fluid boundary. Such structures remain hidden in instantaneous pressure, vorticity 
or streamline plots of unsteady fluid flows, but become  the dominant flow structures observed in 
dye or smoke visualization of separation. As an illustration, the upper part of Fig. 1 shows our 
experiment visualizing separation in the form of a thin dye streak emanating from the boundary. 
The lower part of the same figure shows the linear approximation of the separation profile 
obtained by applying our criteria to a direct numerical simulation of the same flow. 

 

 
Figure 1: Separation spike (unstable manifold) visualized by dye (upper figure), and found in a related direct numerical 
simulation by our exact separation criterion. The criterion gives a linear approximation for the separation profile 
(straight line), which notably differs from the separation line inferred from instantaneous streamlines (curve on the 
right). See [7] for details; joint work with Tom Peacock (MIT). 
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Results 
 
1. Three-dimensional separation theory 
 
We have developed an exact theory of three-dimensional steady separation [6]. Our theory 
predicts separation lines and separation angles from on-wall measurements of wall shear and wall 
pressure. The theory also states that there are only four topologically distinct robust separation 
geometries with uniquely defined separation lines. We show these possible geometries in Fig. 2.  
 

.  
Figure 2: The four basic separation patterns that may arise on the surface of a three-dimensional body. 

 
We have verified the predictions of our new 3D theory in direct numerical simulations of a 
backward-facing step and a lid-driven cavity flow [1]. Figure 3 shows separation manifolds 
obtained for the step flow. 

 
Figure 3: Leading-order separation surfaces constructed from on-wall pressure- and skin-friction measurements on the 
top wall behind a backward-facing step. Also shown are nearby streamlines whose geometry validates the separation 
surfaces. 
 
2. Two-dimensional separation control 
 
Our kinematic theory of two-dimensional separation (develop under prior AFOSR support) 
enables the design of controllers that reduce separation or reattachment zones to a required size 
[5]. We demonstrated this in direct numerical simulations of channel- and step flows. As an 
example, Fig. 4 shows the reduction of the reattachment zone behind a backward-facing step 
using our control-of-invariant-manifolds approach. 



 
Figure 4: Closed-loop reattachment control behind a backward-facing step. The upper right figure shows velocities and 
streamlines in the open-loop system; the lower right figure shows the same for the closed-loop system. The controller 
was designed to reduce the reattachment length from approximately 0.3m to 0.2m. 
 
3. Reduced flow modeling for flow control 
 
For Navier-Stokes flows, we have derived a hierarchy of localized PDE models (Reduced Navier-Stokes or 
RNS equations) to approximate the evolution of the skin friction and the wall pressure [3].  We proved that 
all members of the RNS model hierarchy are well posed. We also found that in short-time numerical 
simulations, the RNS equations show close agreement with skin-friction τ and wall-pressure-
gradient γ computed from direct Navier-Stokes simulations. 

 
 
Figure 5: Evolution of the τ and γ profiles in the cubic, quartic, and quintic RNS equations for the Blasius boundary 
layer flow. At the nondimensional time t=0, the profiles agree with the exact solution. 
 
4. Applications of coherent structure detection outside fluid mechanics 
 
We have also explored the detection of Lagrangian Coherent Structures or LCS (developed for 
fluid flows under prior AFOSR award) for problems outside the realm of fluid mechanics. We 
used our LCS techniques to uncover the phase space geometry of nonlinear vibration absorbers 
[4], and find a condition for cell-death in a model of biological signaling networks [2] (see Fig. 
6). 



 
Figure 6: An LCS (stable manifold) separating the phases space of a cell model into death and survival regions. 
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